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DOPPLER STATISTICS OF OCEAN VELOCITY VARIABILITY

I. INTRODUCTION

In the past decade, the oceanographic community has shown a great deal of

interest in the use of high-frequency-Doppler sonar to measure the ocean

velocity field. Pinkel (1979, 1981) successfully used a 87.5-kHz, 3-kW system

mounted on the R/P FLIP to measure the velocity of internal waves. Regier

(1982) and Joyce et al. (1982) demonstrated that a Doppler profiler can be

employed underway from a ship to measure current shear. L'Hermitte (1973) and

Farmer and Crawford (1983) used coherent Doppler sonar techniques to iiier

ocean currents. Recent review articles in ocean Doppler sonar techniques

include Pinkel (1979) and Mathews and Hicks (1981).

Despite all of this recent work in the area of Doppler sonar, there has

been only limited research into the relationship between Doppler signal

statistics and ocean velocity statistics, and into the intrinsic limits of

performance of oceanographic Doppler sonar systems imposed by the nature of

the velocity field itself, in particular, by the spatial statistics of the

velocity field. Oceanographic Doppler systems typically are limited to

estimating the Doppler shift associated with the component of velocity along

the mean acoustic ray path of the beam pattern, averaged over the scattering

volume. The effect of a random component of the velocity field and the effect

of the component of velocity transverse to the mean beam pattern axis is to

produce Doppler spectral broadening that is usually treated as noise. (See,

for example, Pinkel (1981), who employed the spectral estimation techniques of

Rumiler (1968) to obtain internal wave-induced Doppler velocities.)

The problem of Doppler broadening by random velocity fluctuations and by

flow perpendicular to a finite sized beam pattern has drawn some interest both

in the general ultrasound literature (see Mathews and Hicks, 1981) and in the

laser flow literature (see Edwards et al., 1971). Doppler broadening by a

random velocity field has been considered by a number of authors, including



Green (1964), Rasmussen and Head (1978), Farmer (1983), and L'Hermitte

(1983). Their results show that this type of Doppler broadening is

proportional to the rms value of the fluctuating velocity.

Brown and Clifford (1973), Brown (1974), and Sullivan and Kemp (1979),

among others, examined Doppler broadening effects due the advection of the

component of the velocity field perpendicular to the beam pattern axis.

Newhouse et al. (1980) and Albright (1976) examined the combination of both of

the above effects.

The purpose of this report is to develop a model that will be useful in

obtaining the relationship between the space/time statistics of the ocean

velocity field and those of the returned acoustic signal for a pulsed, high-

frequency, narrowbeam, monostatic sonar system -- the type of system commonly

employed in oceanographic measurements. Special attention is given to the

statistics of the pulse-to-pulse correlation function, in particular, its

variance, which is a fourth-order moment. Also, the utility of using the

statistics of the returned signal to infer information about the spatial

structure of the microstructure velocity field is analyzed.
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I. SCATTERING MODEL

Consider the signal received by a narrowbeam, pulsed, monostatic sonar

resulting from the acoustic scattering of discrete particles embedded in a

randomly moving fluid. The following assumptions are made:

1. The frequency is sufficiently high that, in the farfield, straightline

geometric acoustic propagation applies.

2. The scatterers are assumed to follow the fluid motion perfectly.

The returned signal, then, is a linear sum of reradiated replicas of the

transmitted signal, modulated in'amplitude by individual particles strength,

transmission loss, and the transmitter/receiver beam pattern, and in phase by

the location of each scatterer. Only the farfield case will be examined.

A monostatic sonar transmits a series of identical pulses *T(t) of

duration Tp repeatable at time interval Tr. Each pulse is expressed as the

Fourier series over the pulse duration Tp. Thus,

ZT(t) E 4 k exp(iwkt) for -Tp/2 < t < Tp/2

(1a)

*T(t) = 0 for Tp/2 < t <Tr - Tp/2

and

OTIt - (n 1)Tr] - T(t) for 0 : t - (n - 1)Tr ; Tr , (lh)
n - 1, 2, 3.....

where wk - 2wk/Tp = kAw. The pulse is taken as narrowband about some center

frequency wI, with

b~q±rI 2 0
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where r o q, with the bandwidth B given by B - 2ra. The contribution of

ambiguous scattering volumes in the returned signal is ignored. (This can be

accomplished by either taking

Tr > 2Rmax/c >> Tp

where Rmax is the maximum range at which the returned scatterer signal is

above some prescribed detection threshold, or by the use of a series of

narrowband pulses with a sufficiently wide range of center frequencies.)

The returned signal *(t) of a narrowbeam, monostatic sonar system

operating in the geometric acoustics regime is just the sum of the

contributions of the individual discrete scatterers and can be represented by

0(t) - I dr b2 (n)a(r)p(r,t)+T(t - 2r/c) ,

= T dr f b2 (n)a(r)p(r,t) I 4k exp i[wk(t-2r/c)J , (2)

where b(n), n - r/r is the beam pattern function. The summation over K will

be understood to mean, subsequently, over all k, from +- to --. The radial

integral in equation (2) is also understood to be constrained by the pulse

duration, i.e.,

c(t - Tp)/2 < r ( c(t + Tp)/2

The discrete scatterer density function p(r,t) is defined as

N

p(r,t) - E [r - r(Xj, t - tj)] (3)

j-1

where r(X,t) is the vector position (at time t) of a fluid element. This

representation is termed Lagrangian in fluid dynamics (see Lamb, 1932). The

position at initial time t - 0, namely X, is defined by X - r(X,O). For

scatterers being advected with the fluid, Xi represents the initial position
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of the jth scatterer. The factor t - tj in r of equation (3) is the time at

which acoustic energy was reflected from the jth scatterer, which was located

at the time of scattering (i.e., t - tj) at location r(Xj, t - tj).

The discussion is confined to the case where the scatterers follow the fluid

perfectly. The quantity a(r) in equation (2) is taken as real and represents
the signal amplitude resulting from the combined effects of transmission loss

and scattering strength.

Consider the received signal M(t) due to the mth pulse. From equations

(2) and (1b), it follows that

Im(t) - I dr E Pk b2 (n)cx(r)p(r,t) exp{iwk[t-(m-l)Tr-2r/c]} (4)

V

The subscript V in equation (4) indicates that the volume integral is over

scatterers ensonified by the mth pulse. A range gate is now applied to M(t)

and the returned gated function OM(t') is defined as

% (t') h(t') m(t) ,(5

where

t'= t - (m - 1)Tr - xm

and

h - h ( t ) fo r -Tj / 2 : t ' ; T [/ 2

h - 0 otherwise.

Now, take

T1 < Tr

5



Here, T, is the duration of the range gate and xm is the time delay of the

range gate. Substitution of equation (4) into (5) yields

Am(t') h(t') f dr Z b2 (n)a(r)p[r,t ' + (m - 1)Tr + m]4#k

V

exp[iwk(t'+Tm-2r/c) ]

- h(t')cL(R) f dr E b2 (n)p[r,t ' + (m - 1)Tr + 'm]n4k

V

exp{iwk[t'+2(RPm-r)/cl , (6)

where Rm - Cm/2 ) cTp/2 . The signal amplitude factor in equation (6) has

been taken to be

a(r) a

The volume integral in (6) at any instant t' (see figure 1) is taken over the

range interval

r, S r - Rm 9 r2 , (7)

with

r, - c(t' - Tp/2)/2 (8a)

and

r2  c(t' + Tp/2)/2  (8b)

Equation (6) represents the starting point for Doppler processing. Pinkel

(1981) estimates Doppler shift by calculating an incohcrent average of the
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cT /21 cT 2

C(-t m + 0'/2

Z

SOURCE/RECEIVER AT Z 0

Y

Figure 1. Scattering Volume Contribution
(The radial contribution of scatterers for the mth pulse transmitted during the

time interval (m-1)Tr-T /2 9 t 9 (m-1)Tr+T /2, where Tr is the repetition
rate, Tp is the pulse Suration, and t' revers to the receiver gate time

defined over the gate interval 0 6 t'! T1 = Tp.)

mean of the spectral estimate of 4b(t') over the gated time interval T1 .

(This is a technique first suggested by Rummler, 1968.) The Doppler velocity

sensitivity of each estimate in the average is defined by the effective pulse

duration and is improved by performing an incoherent average over spectral

estimates of a set of pulses over a time period such that the estimated

Doppler-shifted velocity remains approximately constant.
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In this report, the pulse-to-pulse statistics of %(t') will be

examined. The statistics of the problem enter through the Lagrangian position

vector r(Xj.t) in the scatterer density function p(r,t) given by equation

(3). One can decompose r(Xi,t) as

r(Xi,t) - Xj + dj , (9)

where dj - d(Xi,t) is the relative displacement of a scatterer from its

initial position Xi. Note the difference in the statistics of Xi and di.
Xi refers to the position of scatterers at a particular instant of time (in

this case, the initial instant of time t - 0), while dj is the displacement

from that position due to advection by the fluid velocity field. It will be

assumed that Xj has an equiprobability of initially being anywhere in the

spatial domain of the problem (or, equivalently, each of the N scatterers are

placed equiprobably throughout the volume). Note that the statistics of Xi
and dj are independent and that, therefore, for any function F(Xi,di), the

ensemble average <F(Xj,dj)> can be written as

<F(Xj,dj)> - <<F>x>d  <<F>d>X

where

<F>X - I dXj FP(Xj)

and

<F>d - r ddj FP(dj)

r;spectively, and P( ) indicates the probability density function. The time

average is also defined as

T
H[...)IT"- (1/T) Jr dt(.),

0
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and the space average as

L

[(")IL - (1/L) I d (.)
0

It is straightforward to show from equation (6) that the time average of the

received signal, the first-order time statistic, is zero:

[('m(t')]T1 = 0 . (10)

For the second-order statistics, the pulse-to-pulse gated temporal correlation

function S'rm is defined in the usual fashion and can be written as

S'nm - [n(t')'m(t')]Ti c(Rn)ca(Rm)<h 2 (t,) I dr' I dr"b2 (n')b 2 (n')
Vn Vm

E #k t*i expfi(wk-- l)t'+2i[wl(Rn-r')- l(PRm-r")]/cI

k,l

p[r',t'+(n-1)Tr+'n] p[r",t'+(m-1)Tr+'m]>T[ (1

where the scattering volumes Vn, Vm from equation (7) limit the range of

integration of (11) to

r, ;5 r' - Rn I r2 ,

and

r, _; r" - Rm ; r2  ,

respectively. Note from equations (8) that r, - c(t' - Tp/2)/2 and r2 .

c(t' + Tp/2)/2. In the appendix, a detailed derivation is carried out for the

normalized pulse-to-pulse correlation function Snm- S'nm/S'nn for the case in

which the largest scale of the fluctuation field is smaller than the range

dimension of the scattering volume. Generalization of these results to the
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case where the scattering volume is smaller than the largest scale of the

microstructure field, as discussed in the appendix, is straightforward but

algebraically complicated. The final result of the appendix derivation is

equation (A-31); namely,

Snm E +1#l I dnhb 4(nh) exp[i2wl-n(m-n)Tr.nh/c]

I

exp(iwl[2 z(m-n)Tr/c-M1]} J d~g(E) exp{iw[2v'z(m-n)Tr/c]} , (12)

where

V'z - V'Z(Z)

and

E - (z - R)/Az

with Az - cTp/2 and R Rn . Also, vz is the mean velocity averaged over the

scattering volume, equation (A-26), in the direction of the mean ray axis of

the beam pattern; v'z is the random velocity in the direction of the mean ray

axis of the transducer, and vh is the vector component of velocity

perpendicular to the mean ray axis of the beam pattern. The range gate used

in deriving equation (12) takes TI - Tp

and

h - 1 for -TI/2 ; t' 9 TI/2

h - 0 otherwise.

It should be noted that equation (12) has appeared in a variety of forms in

the scientific literature. See, for example, Green (1964), Edwards et al.

(1971), Albright (1976), and Farmer (1983).

10



Equation (12) is further simplified by writing it in the form of the

product of three terms, namely,

Snm E =IKQ1 , (13)

where

= 14*1 (14)

(with -I normalized, namely, E E l - 1) is the lth spectral component of the

transmitted pulse; and where

K1 _ J" dnhb
4 (nh) exp[i2wlvn(m-n)Tr-nh/c] (15)

represents the contribution from the component of velocity perpendicular to

the mean ray axis; and

Ql - exp[i2l(mn)Tr(vz-cAc/2)/cj I dgg(g) exp[i2wsl(m-n)Trv'z/c] (16)

is the contribution to the correlation function from the component of velocity

along the mean ray axis of the transducer, including both mean and random

components. Note that, if v'z - 0 and vh - 0, substitution of equation (16)

into (13) yields

Snm - E +I+*IQI - E I,#*l exp{i exp[i2wl(m-n)Tr( z-cAx/2)/c]) (17)

Equation (17) is the theoretical basis for a coherent Doppler estimate of vz.

11/12
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I1. INPUT OF FLUID VELOCITY STATISTICS

Consider the role of the mean along-beam velocity component. From the

form of equations (13) and (16), Snm has a maximum if

aT - 2Vz(m - n)Tr/c , (18)

which can be interpreted as an along-beam alignment of the mth and nth

scattering volumes, which are separated by the time interval (m - n)Tr.

Equivalently, the phase difference of the two received signals produced by vz

in equation (16),can be compensated for by adjusting Ac to maximize Snm. The

use of equation (18) represents a coherent Doppler estimate of the bean

velocity in the direction of the-sonar axis (L'Hermitte, 1983). The use of

equation (18) in (16) results in

Q1 - I d~g(E) exp[i2ol(m-n)Trv'z/c] . (19)

Consider the factor K1 in equation (13), which from equation (A-10) is

recognized as a fourfold convolution integral of the aperture function w:

KI . w([h(m - n)Tr - x']*ww*w , (20)

where the convolution operator is defined as

U(x - x')*V - f dx'U(x - x')V(x').

It is straightforward to show that if the weight w has characteristic lengths

Lx , Ly, then the fourfold convolution of w, i.e., equation (20), also has

characteristic lengths Lx , Ly. Thus KI, which is the sole contributor to the

pulse-to-pulse correlation function in the absence of any radial velocity

fluctuations on the scale of the scattering volume and smaller, has a

characteristic length scale of the dimensions of the sonar aperture.

Therefore, Ki (and, hence, Snm) becomes small when

vh(m - n)Tr > L , (21)
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where L = (Lx, Ly) is the characteristic vector length scale of the sonar

aperture. Thus, vh,L can be combined to form a characteristic time of

decorrelation.

Note from equation (19) that Ql is a spatial average. Consider the

circumstances under which this spatial average can be used in place of an

ensemble average over displacement statistics, i.e, when

Qi = <Ql>d • (22)

Assuming Gaussian statistics and a homogeneous turbulence (Hinze, 1959) model

for the microstructure velocity field yields from equation (19)

<Q=d I d~g()<exp[i2al(m-n)Trv'z/C]>d - exp 2 , (23)

where

- (m - n)Tr/TO , (24a)

with

(TO)-2  2K12 <(v'z)2 >d , (24b)

where Kl - wl/c. Note that t0 represents the characteristic decorrelation

time associated with v'z -- the radial velocity fluctuations on the scale of

the scattering volume and smaller. It should be noted that results similar to

equation (23) have been derived by a number of authors; see, among others,

Green (1964), Edwards et al. (1971), Albright (1976), and Farmer (1983).

To examine the validity of equating the spatial average with the ensemble

average, i.e., equation (22), consider the variance of QI defined by

e <(QI - <Ql>d)2>d

S<Ql>d 2 $ dgdt'g(U)g(E')(exp[2 2Rv(z-z')]-1} , (25)

14



where is defined in equation (12) and Rv is the normalized fluctuating

z-component velocity correlation function:

Rv(z - z') - <v'z(Z)v'z(z')>d/< (vz) 2>d • (26)

The spatial dependence of Rv on the difference variable z - z' results from

the assumption of homogeneity for the fluctuating field v'z . Note that 9,

equation (25), is a fourth-order statistic of the received signal.

By definition, IRvI 9 1, with the limiting value Rv - 0 corresponding to

uncorrelated variability on the scale of the scattering volume and smaller for

which case, from equation (25), 9 - 0 and

Q - <Q>d

However, in general, Rv # 0 and, thus, 8 * 0, and Q * <Q>d

As a simple example illustrating the nature of equation (25), set g( ) -

1 (even though this is not true and g is given by the triangle function, the

difference in results being a constant on the order of 1) and let Rv be given

by the simple expression

Rv( ) .1 - z/l for z 5 1 ,

(27)

Rv(z) - 0 for z > 1 ,

where I is interpreted as the characteristic scale of the variability. This

simplification still retains the essential physics of the velocity correlation

function and its role in equation (25). The resulting e is plotted in figure

2 versus i for different values of the nondimensional parameter x0 - (l/Az),

the ratio of the velocity variability length scale to the along-range

dimension of the scattering volume. Figure 2 also shows a plot of [<Ql>d]12

fluid velocity field in the z-direction becomes very small compared with the

exp -2 2 versus . Note that as x0 - 0, i.e., the spatial length scale of the

15
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Figure 2. Second- and Fourth-Order Moments
(The solid line is the function <Ql>d, equation (23); the symbols refer to
families of G, equation (25), for different ratios of x0 . I/Az, with g(t) =
1 and equation (27) as the model for microstructure correlation function.)

scattering volume dimension Az, e - 0. This implies that the variability

characterized by scales that are small relative to the scattering volume (in

the z-direction) result in small e and, hence, Q a <Q>d. As x0 - 1, 0

increases and Q * <Q>d. From the general form of equation (25), note that

different spatial scales of the velocity field contribute to e for different
i, the largest scales contributing relatively more for small and the

smallest scales contributing more for larger . To understand this, note that

from equation (25)

16



- , (28)

where X is the integral scale defined by

X- IT dWd'g(E)g(9')Rv(z - z')

The integral scale is a measure of the largest scale of the variability. (See

Hinze (1959) for a discussion of integral scale in turbulence theory.) This

behavior is indicated through the family of different x0 values in figure 2 by

noting the large change in the slope of 9 near = 0, for increasing xO .

At large times , only the smallest values of Rv(z - z') (and, hence,

smallest scales) contribute, since Rv is, in general, a monotonically

decreasing function for realistic ocean microstructure fields. Using the

lowest order expansion of Rv(z - z'), namely,

Rv(z - z') - 1 - 1z - z'12 /(21, 2 ),

where Iv is termed the turbulent microscale, which is a measure of the

smallest scale of the variability field (see Hinze, 1959, or Tatarski, 1971),

in equation (25) yields for > 1 the approximation

<(Q1)2 >d= $ d~dE'g(E)g(E') exp[-(z-z') 2 2/lv2] a lv/( Az) . (29)

Note that while the function Ql contains information on the variance of the

velocity field, 8 or <(QI) 2>d contains additional information on the spatial

structure of the velocity field. Conversely, estimates of both Qi and e from

measurements might allow estimates not only of the variance <(v'z)2 >d but also

of the velocity correlation function Rv and, in turn, its Fourier transform,

the velocity wavenumber spectrum.
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IV. OCEAN APPLICATION

The theory developed in sections II and III is applied here to the case

of ocean velocity statistics modeled as microstructure. The notation and

coordinate system of the earlier sections are continued. Note that the

z-coordinate is along the mean ray axis of the beam pattern. The dominant

velocity field transverse to the beam axis is in the horizontal. As a

concrete example, consider a moored, pulsed, monostatic, sonar system. A

comparison will be made between the operational parameters for a Doppler

velocity estimate and a velocity estimate that would be inferred through the

use of the higher order statistic <(Ql)2 >d, given through equation (25), along

with the second-order statistic <Ql>d, from equation (23). This latter

estimation technique is called stochastic Doppler because it involves the

direct relationship between the ensemble statistics of the acoustic field and

the ensemble statistics of the oceanographic velocity field, in contrast to

traditional Doppler, which estimates velocity in real time.

The inverse relationship between the statistics of the velocity field and

e or <(Q1) 2>d is not developed in this section, but is left for a subsequent

report. Rather, the limits of performance of the both traditional Doppler and

this new stochastic Doppler are examined in terms of the minimum spatial

resolution, maximum velocity sensitivity, and ranges potentially achievable,

given system noise and the variance of an estimate caused by the finite number

of degrees of freedom intrinsic to the measurement of microstructure.

In examining the constraints imposed on real-world operation, other

factors will be ignored for simplicity. These include the individual

scatterer strength and intrinsic phase variability (apart from relative

location, which is considered in this work), scatterer motion relative to the

fluid, and phase fluctuations from propagation through random index-of-

refraction variability. (Note that it may be possible to infer scatterer

motion relative to the fluid to the resolution/sensitivity discussed below if

such motion is statistically different from the fluid motion.) In addition,

the reader is reminded that an incoherent scatterer model has been used with a

large number of scatterers per unit scattering volume.
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Small-scale ocean variability, which includes internal waves,

finestructure, and microstructure, is here defined as variability on the order

of and less than internal waves, i.e., spatial scales of tens of kilometers

horizontally, hundreds of meters vertically, time scales between the inertial

period (on the order of 24 hours at mid-latitude) and the buoyancy period

(typically 10 to 20 minutes). A "canonical" vertical wavenumber spectrum of

velocity variability, based on observed data, is shown in figure 3 from

Gargett et al. (1981). Note the regimes of internal waves, finestructure, and

microstructure. Implicit in this model is that microstructure is isotropic

with a characteristic (largest) scale size 1, and a dissipative (or smallest)

scale size lV. Note that 1 - meters and lV = centimeters for ocean

microstructure and that the spectral level of velocity microstructure varies,

following the three curves ([, [, [II) of figure 3.

10-1- -K) = 3.8 x 10-6K-2

10-3- O(K) =3.8 x 10-7K:- 3 .-3

C-

INTERNAL
S10-5- WAVES = 3.8 X 1O6 K-5/3

FINE-
10-7 STRUCTURE

MICROSTRUC URE
I I I

10-2 -1 00102 WAVENUMBERCPM

Figure 3. Observed Vertical Wavenumber Spectrum of Small-Scale Ocean Velocity
(From Gargett et al. (1981). Shown are three levels of microstructure,
labeled 1, [1, and [11. A~so indicated are regimes of internal waves,
finestructure, and microstructure.)
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The Doppler approach is considered first. This analysis is similar to

that of Pinkel (1981) for the internal wave range used in the R/P FLIP's

87.5-kHz sonar system, except that the coherent Doppler technique is used

(rather than the Rummier (1968) technique), since the problem has been

formulated in that manner. It can be shown that the two techniques yield the

same level of sensitivity/precision for the same number of independent,

real-time, velocity estimates.

The estimate of Doppler velocity is obtained from equation (18) via the

shifted time delay AT = 2vz(m - n)Tr/c, where vz is the spatially averaged

mean, defined by equation (A-26) in the appendix. Using equation (17) for the

case where v'z is negligible, which would occur if the scattering volume were

sufficiently small, then from equation (16) QI = 1 when AT - 2vz(m - n)Tr/c.

However, the contribution of K1 in equation (13), which contains the effect of

motion perpendicular to the mean beam axis and represents a Doppler spread

effect, must be considered. (For examination of this effect, see (among

others) Green, 1964, and Brown, 1973.) As discussed in section I1, KI is

nonzero over a time scale L/v', where v* is the characteristic velocity of

flow perpendicular to the mean beam axis, and L is the characteristic

dimension of the sonar in the direction of v*. Note also that if a mean

shear, q - IVhvzl, of the along-beam velocity is present, it is

straightforward to show that there is a decorrelation effect of the same form

as equation (20) for the transverse component of flow. The same scaling for a

characteristic decorrelation time occurs; namely, L/v*, with v* Q qR, R being

the range. This can also be derived from equation (A-25) using (A-10) by

including the shear term in the expansion for the mean velocity in equation

(A-26), whence, with this substitution, the shear term q has the same effect

as the mean component of flow perpendicular to the mean ray axis.

Thus, for an estimate of velocity from the pulse-to-pulse correlation

function Sum, the time delay between pulses must be restricted to

T = (m - n)Tr < Tmax - L/v" , (30)

where v* is taken as the maximum of qR and the transverse velocity component
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(perpendicular to the mean ray axis), and where equation (17) can be used to

estimate the Doppler time delay AT. Note from equation (30) that the maximum

number of correlated sequential pulses p is given by

p - (m - n)max - L/(Trv*)

The maximum time delay AT - atmax over which an estimate of the mean velocity

vz can be made is on the order of

ATmax - 2VzpTr/c a 2L(vz/v*)/c 
(31)

To resolve this time shift, which is estimated by maximizing Snm (and hence

QI) given by equation (16), namely,

QI - exp[i2wl(m -n)Tr(vz-cAt/2)/c
]

it is necessary that the fluctuation level of Snm, AS, due both to statist~cal

variability of the returned signal (so-called "speckle noise") and system

noise, be less than the variation in Snm due to some prescribed variation

(desired precision) in Vz, 6Vz; i.e.,

(AS)2 < 2Stm&S - 2Snm(aS/avz)max&vz a 4KqL&Vz/v, (32)

where the subscript q refers to the center frequency of the transmitted

(narrowband) pulse. Equation (32) has been evaluated at Tmax and Snm has been

taken as a 1. If N-1 is the system signal-to-noise ratio, then 
(AS)2 is given

by

<(AS)2> a 2[N 2 + (I/BTp)J , (33)

the factor 2 arising because Snm is a second-order statistic, 
whence equation

(32) becomes

[(1/BTp) + N2 ] 9 [2KqL(6vz/v')] 
(34)
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Equation (34) can be further simplified. Let 1 be the spatial scale of the

velocity field necessary to be resolved. A pulse duration time Tp must then

be chosen that is no longer than

Tp = 2 1/c (35)

For a narrow-bandwidth pulse, one can write

B a wq/Q , (36)

where wq is the center frequency of the transmitted pulse; for a narrow-

beamwidth planar transducer, one can use the approximation (Kinsler et al.,

1982)

L/(2r) - 1/Kq (37)

where v is the half-angle beamwidth, Kq - wq/C. Substituting equations (35)

through (37) into (32) yields

[Q/(2oeql) + N21 - [41 8vz/(uv)] (38)

Equation (38) can be considered the fundamental equation for setting

sensitivity/resolution limits for the mean Doppler estimate z.

From figure 3, the model wavenumber spectrum of velocity microstructure

goes as EK-5/3 . The velocity sensitivity Avz corresponding to the spatial

scale is given by

6vz a E'11/3 , (39)

where, from figure 3, E' has the typical range of values

3 x 10-3m2 /3/sec > E' ) 10-3m2 /3/sec ,

correspondin8 to strong and weak turbulence limits (i.e., curves I and I1,
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respectively, in figure 3). Substitution of equation (39) into (38) for the

case of zero system noise (N - 0) yields the minimum resolution criterion

I 2 [Qv*/(8WqE')]0 .75  (40)

while for the case dominated by system noise, it yields

1 [N2uv*/(4E'))3 . (41)

As an example, for the sonar parameters,

- 10 - 1.7 x 10-2 radians,

Q - 15, and

fo - 100 kz and 1 MHz,

table la shows the minimum spatial resolution for a signal-to-noise ratio of

20 log (N) - -10 dB. A value of v* - 0.3 meter/second and the weak turbulence

limit of figure 3 (E' - 10-3m2/311/3) have been used. Table la indicates that

over this frequency range coherent Doppler does have sufficient spatial

resolution to resolve the microstructure spectrum to scales on the order of

centimeters. However, to achieve this -, I resolution for an isotropic

microstructure field, the transverse dimension of the scattering volume

(perpendicular to the mean ray axis) must be on the order of 1 and, hence, the

range is restricted to

R < 1/(2u) a 30 1

with the range limited to less than 1 meter for 1 on the order of

centimeters. However, the range extent of the nearfield of a planar

transducer can be written (Kinsler et al., 1982) as

Rnearfield - r/(8KqVu2 ) a 3.25 meters and 0.325 meters
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Table la. Sensitivity Limits: Spatial Resolution of Coherent Doppler

N2 - 0 N2 - 0.1

1 MHz 0.44 cm 0.60 cm

100 kllz 2.5 cm 3.1 cm

for the iO0-klz and 1-MHz cases, respectively. Thus, although the sonar has

the spatial resolution and velocity sensitivity necessary to resolve

microstructure using a coherent Doppler estimate, the range over which this

occurs is very restrictive. The upper limit of I MHz for the calculation used

here was chosen somewhat arbitrarily based on transducer size, power output,

and range constraints. However, both equations (40) and (41) show a less than

linear increase in spatial resolution with increasing frequency.

Note that equations (23) and (25) establish relationships between the

statistics of the received signal and those of the velocity field, namely,

<(v'z) 2 >d and 2[1 - RV(z)]<(v'z)2>d, the variance and the structure function,

averaged over the scattering volume. Since this average is taken over a

spatial scale on the order of the largest scale of the microstructure field,

these relationships allow a relaxation of the spatial resolution criteria used

in Doppler estimates of the instantaneous velocity fluctuation from the

smallest scale of the variability field to the largest scale of the

variability, provided that the sensitivity of the estimate of the velocity

field statistics is sufficient to resolve the microstructure. This, in turn,

would increase the range capability to the order of 30 meters for 1 - 1 meter

and to 300 meters for I - 10 meters. The estimates of <(v'z)2 >d and

2[1 - RV(z)]<(V'z)2>d obtained through the use of equations (23) and (25) are

called stochastic Doppler estimates.
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From this viewpoint, the sonar parameters are set such that the

scattering volume is on the order of (or larger than) the characteristic

volume of the velocity microstructure, which is on the order of meters. Note

that, for I > 1 meter, the mean velocity component z corresponds to

oceanographic processes of larger scale than microstructure and, from equation

(38), can be estimated to be on the order of 0.1 mm/sec for N2 - 0.1 and for

the same sonar parameters used in the calculations of table la. Thus, the

variance of a z estimate corresponding to spatial scales greater than 1 meter

would not be a limiting factor in the estimation of parameters associated with

the microstructure field by the use of equations (23) and (25). A

characteristic parameter that has arisen in the stochastic Doppler

relationships of (23) and (25) is the decorrelation time (namely, tO)

associated with the variability of scales on the order of the scattering

volume and smaller given by equation (24a). The maximum number of correlation

times obtainable is limited by the effect of transverse flow past the sonar

and, following the discussion above, is easily seen as given by

tmax - Tmax/iO - [2<(V'z)2>dJ'/ 2eqL/v*

- (21r)[2<(vfz)2)d]I/ 2/(vv*) a 1.74 (42)

for the sonar parameters used above, with v* = 0.3 meter/second and <(v'z)2)d

calculated from equation (39) and the weak turbulence limit. To obtain the

precision possible using the stochastic Doppler approach, the variance of Oq

will be used as the fundamental relationship between the acoustics and the

fluid velocity field, with the along-beam mean component removed by equation

(18). Accordingly, from equations (23) and (25),

<Qq2> d - 11 dtdt'g(t)g(t')exp[-2i2RV(z-z')]-),

where = max , with max given by equation (42).

From equation (29) with I - AZ for max

<Qq2 >d 2 lv/( maxl) - {lvv*u[2<v'z)2 >d]l/ 2/(21l)) (43)
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Thus, equation (43) can be used as the smallest <Qq 2>d to be resolved in order

to have sufficient sensitivity to resolve the smallest scale of the

microstructure IV . Let (&S)2 be the fluctuation level of (Qq)2 due to speckle

noise and system noise; then, since equation (43) is a fourth-order statistic,

(AS)2 = 4(1/BTp + N2 ) (44)

The sensitivity can be further improved if there exists some number of

independent samples of the returned signal no over which v'z is stationary, in

which case (AS)2 would be reduced by 1/no. Thus, the criterion for resolving

the smallest scale of microstructure Iv is

(1/no)(AS)2 < [lv/( maxl)] 2  (45)

One can write

no = Ta/max - v*1a/L = cl/L (46)

where Ta = ml/v* is the time period over which v'z is statistically

stationary. The parameter m is associated with the degree of anisotropy of

the larger scale variability generating the microstructure. If this field has

physics similar to that of internal waves, one would expect that a is a ratio

of horizontal-to-vertical scale of the larger scale field and that z a N/f a

100, where N is the buoyancy frequency and f is the coriolis frequency. (Note

that a can be considered as the ratio of the horizontal extent to the vertical

extent of a patch of microstructure.) Substituting equations (30), (35)-(37),

(44), and (46) into equation (45) yields

Iv ; ([N2 + Q/(2Kql)1[64w 3l<(v'z)2>d/[Kqmu3 (v*)2 )112  (47)

For the same sonar parameters as used for the coherent Doppler case (i.e.,

Q - 15, v - 10, and v" - 0.3) but with I - 1 meter, the minimum resolvable lv

for the 1-MHz and 1OO-kHz cases has been calculated and is shown in table lb.

These results suggest that there is sufficient resolution to obtain Iv,

although it is somewhat marginal at 100 kllz for the N2 - 0.1 case. Note that
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equation (47) depends only on the square root of (, the degree of anisotropy

of the microstructure patch. A factor of 10 reduction in a yields a factor of

3 reduction in sensitivity with acceptable values in all cases except the

100-kHz, N2 - 0.1 case. Also, note that equation (47) shows no dependence on

1 for the noise-free case -- a rather surprising result. Significant

improvement in sensitivity can occur by decreasing the mean transverse current

(linear dependence). The value of v* - 0.3 meter/second is an upper limit

estimate. Finally, although equation (47) shows an increase in sensitivity

with increasing beamwidth, the approximation used in equations (40) and (42)

involved Tmax > 1, which from equation (42) shows a decrease in xmax with

increasing beamwidth.

Table lb. Sensitivity Limits: Spatial Resolution of Stochastic Doppler

N2 _ 0 N2 _ 0.1

1 MHz 4.26 cm 1.1 cm

100 kllz 13.0 cm 3.5 cm
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V. SUMMARY AND CONCLUSIONS

This report has examined the returned signal statistics associated with

acoustic scattering from a large collection of scatterers embedded in a model

fluid velocity field appropriate for oceanographic application. The fluid

velocity field is three-dimensional and contains a microstructure or

"turbulent" component. The underlying acoustic model is quite simple -- a

monostatic, planar transducer projects very high frequency sound (>100 kHz)

into a very large number of identical scatterers that follow the fluid

perfectly. Identical pulses are transmitted at some constant repetition rate

Tr and then gated at some delay time corresponding to some prescribed range of

interest. The propagation is assumed to be in the geom]etric acoustics regime

and only the farfield case is considered. Ambiguous scattering volumes

associated with a repetitive set of transmitted pulse trains are ignored.

(This problem is addressable either by restricting the repetition rate Tr to

be much greater than the travel time to a range where the reverberation level

is below some prescribed amount or by using coded pulses.)

The components of velocity that affect the Doppler statistics of the

returned signal are:

1. The velocity component in the direction of the beam pattern axis and

on the scale of the scattering volume and larger z;

2. The velocity component transverse to the direction of the beam pattern

axis;

3. The velocity shear field in the direction of the beam pattern axis;

4. The velocity components in the direction of the beam pattern axis and

on the scale of the scattering volume and smaller.

Since these effects have been addressed by many authors but in a variety of

contexts, a detailed derivation of the relationship of the returned signal

statistics in terms of these velocity components is presented in the
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appendix; the derivation can be summarized through equations (13), (15), and

(16).

The along-beam velocity on the scale of the scattering volume and larger

produces a Doppler shift or, equivalently, a time delay in the pulse-to-pulse

correlation function Sm. The transverse component of flow produces Doppler

broadening or, equivalently, a decorrelation in Sm. The decorrelation time

Tmax associated with the transverse component of flow is shown to be on the

order of L/v*, where L is a characteristic dimension of the sonar in the

direction of the mean transverse flow velocity v*. This decorrelation time

sets a maximum time over which a moored Doppler sonar can receive coherent

information for the model scattering field presented in this work.

Decorrelation effects or, equivalently, Doppler spread effects, caused by
velocity variability (microstructure) on scales smaller than the scattering

volume show up via the statistics of Ql, equation (16), and have a

characteristic decorrelation time To, given by equation (24b). Calculations

in section IV, i.e., equation (42), using typical oceanographic values and

sonar parameters show that Tmax/co 2 1.7, and that this ratio is independent

of frequency but dependent on the beamwidth and the ratio of the micro-

structure velocity to the transverse velocity v*. These results indicate that

there is enough time of coherence to obtain the variance of the velocity

microstructure.

In section IV a comparison was made between a coherent Doppler estimate

and an estimate based on the statistical relationships, equations (23) and

(25), called stochastic Doppler. The coherent Doppler estimate from frequency

ranges of 100 kHz to 1 MHz has sufficient sensitivity to resolve the smallest

scales of ocean velocity microstructure but is very restrictive in range. On

the other hand, over the same frequency range, the stochastic Doppler

technique also appears to have the sensitivity to resolve the smallest scales

of ocean velocity microstructure with much less restriction on range.
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APPENDIX

DERIVATION OF PULSE-TO-PULSE CORRELATION FUNCTION

As discussed in the body of this report, the first-order statistics of

the received signal %(t') are zero, as would be expected. For the second-

order statistics,

'Bnm - tnm

Then, the pulse-to-pulse gated autocorrelation function, equation (11), is

given by

Sm- [h2(t, )en1T1  (A-1)

with

On a(Rn)zm(Rm) T dr' I dr"b2 (n')b2 (n') E

Vn VM k,l

p~r',t' + (n - 1)Tr + 'En] Plr",t' + (mn - 1)Tr + tgm'

and the scattering volumes Vn and Vm are limited in radial extent by

r, r' - Rn ;5r2 for Vn

and

r, r' - Rm; r2  for Vm

with

r, - c(t' - Tp/2)/2 (A-2a)

r- c(t' - TPI2)/2 (A-2b)
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Since the initial position of each scatterer Xj is taken as equiprobable, the

density function p, being a sum of delta functions, ,an be considered from the

definition of the Lagrangian position vector r, i.e., from

r(Xi,t) - Xi + dj

as a Poisson process with respect to Xj (Albright, 1976). Note, also, that

the scatterer displacement is assumed to be small enough that the explicit

time dependence in p(r,t) can be neglected over the pulse duration time Tp and

the range gate time TI. Since the scatterer initial position Xj can be

described by a Poisson process, it is straightforward to show that to order

1/N, where N is the average number of scatterers in the scattering volume,

Snm - [h2 (t)0nmJT - <[h 2 (t')rm]T[>X - [h2 (t ' ) <enm x]T , (A-3)

where

<enm> X - a(Rn)a(Rm) f dr' j" dr"b2 (n')b 2 (n") E qIk+*l
Vn Vm k,l

exp(i (wk-w1) t '+2i [wk(Rn-r ')-1 (Pk - r ") I/cI

<p[r',t' + (n - 1)Tr + T) p(r",t' + (m - 1)Tr + -Em]>X

- a(Rn)a(Rm) r dr' r dr"b2 (n')b 2 (n') E

Vn Vm k,l

exp(i(o k-owl)t'+2i[wk(Rn-r')--wl(Rm-r")]/c) po6(r' - r" + s).

(A-4)

Note that the second-order statistic for a Poisson process (Papoulis. 1965)

has been used; namely,
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<p[r',t' + (n - 1)Tr + En] p[r",t' + (m - 1)Tr + Em]>X

<pfr',(n - 1)Tr + T.] p[r",( m - 1)Tr + tm]>X

P 0 2 + po&(r ' - r" + s) , (A-5)

where

s - d[X,(m - 1)Tr + Tm] - d[X,(n - 1)Tr + Tn]

is the displacement of a fluid element, initially at X, during the time

interval between the scattering of the nth and mth pulse. Again, since it has

been assumed that the pulse duration Tp and the gate function T1 are kept

sufficiently small, the explicit time dependence of p on t' can be neglected

in equation (A-4). However, since Tr > Tp + Tj , the dependence on

pulse-to-pulse time delay cannot be ignored. Note that the first term on the

right-hand side of equation 'k-5) does not contribute to (A-4) by virtue of

equation (10). (The product of two zero-mean value terms is zero.)

Consider the effect of the delta function on the beam pattern functions

of equation (A-4). For nonzero contributions, the delta function in (A-4)

requires that

r r' + s

Then,

n"- (r' + s)/Ir' + sl a n' , (A-6)

since the displacements of the scatterer over the time intervals between

pulses are such that

s r

For the effect of the delta function on the radial spatial variables of
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equation (A-4), note that contributions can occur only if the double integral

overlaps and, hence, that

I r' - r" + sl 1 cTp/2

The condition for overlap of the radial component of the spatial integrals of

equation (A-4) can be written

Rm - Rn + cAT/2 = R + cAT/2 , (A-7)

where R is now identified as the range to the nth scattering volume, used as

a reference. The time delay AT will be used to estimate a mean Doppler

shift. Integrating over the delta function in equation (A-4) using (A-6)

results in

<9m>X = R2L2 (R)p0 I drb4 (n) E #k+'l

Vo  k,l

exp~i (wk- i ) [t '+2 (R-r)/c ]-iw I (,d-2Sr/c)} (A-8)

where VO , the scattering volume, constrains the range interval by

r, 5 r - R 6 r2 ,

with r1 , r2 defined by equations (A-2a) and (A-2b), respectively. The radial

displacement Sr is given by

Sr - n • s. (A-9)

Note that in the dummy spatial variable r of integration in equation (A-8) the

prime notation has been dropped.

The beam pattern function can be written in the farfield as the Fourier

transform of the aperture function w(x); namely,

b(n) - I dxw(x) exp(iwqn-x/c) (A-10)
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where attention is confined to a planar sonar and x is taken in the x,y plane,

i.e., x = (x,y,O). (Note that the effect of finite frequency bandwidth

dependence of the beam pattern has been neglected; this effect can easily be

taken into account for the narrowband pulses in the analysis by replacing b(n)

with bk(n), where k indicates the pulse Fourier series component number. The

frequency wq is the center frequency of transmission.)

Note that for a planar sonar

n- x nh x,

where nh is the vector component of the radial unit vector n in the x,;" plane,

i.e.,

nh = (nx, ny, 0).

Then,

b(n) - b(nh). (A-11)

Substitution of equation (A-11) into (A-8) yields

<enm> X - R2(x2 (R)po I drb4 (nh) E 4k%' l

Vo  k,I

exp {i (wk-- ) [ t'+2 (R-r ]/c- iwl(A-c-2Sr/c) } ( A-12 )

For a narrowbeam sonar,

nz - cos(u) a 1,

since the polar angle u, defined with respect to the mean ray axis (taken as

the z-direction), is small, i.e., u o 1. Then, the radial spatial variable of

integration in equation (A-12) approximates to
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r a r cos(v) - z , (A-13)

over the limits given by (A-9):

r, < z - R _ r2 , (A-14)

where r1 , r2 are given by equations (A-2a) and (A-2b), respectively. By

definition, the spatial variables of integration of equation (A-12) in the x,y

plane can be written as

x = rnh a Znh (A-15)

by virtue of (A-13). Using equations (A-13) and (A-15), the spatial volume

element of (A-9) can be written as

d3 x a z2 dzdnh a R2dzdnh

which results in (A-12) becoming

<no>X .- R 2ct2 (R)po r dnhb4 (nh)

R+c(t'+TP/2)/2

E #,k+*1 r dz exp{i(wk- l)[t'+2(R-z)/c]-iwl(AT-2Sr/c)}. (A-16)
l ,k R+c(t '-Tp/2)/2

Let

fl(z) - exp(2iwISr/c)

where

-cTp/4 < z - R - ct'/2 < cTp/4 (A-17)

To simplify equation (A-16), fl(z) is expanded over (A-17) in the Fourier

series
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fl(z) - exp(2iwlSr/c) - E alj exp[i(z-R-ct'/2)Kj], (A-18)

where

Kj = 21rj/(cTp/2)

and

R+ct'/2+cTp/4
alj - 1/(cTp/2) I dz exp(2iwlSr/c ) exp[-i(z-R-ct'/2)Kj] , (A-19)

R+ct'/2-cTp/4

which, upon substitution into equation (A-16) and after some straightforward

algebra, yields

<enm>x - R2i2 (R)po I dnhb4 (nh)(cTp/2) E +l+j#*l

exp(-ialdT)alJ , (A-20)

and then substituting equation (A-20) into (A-3) yields

Snm - R2m2 (R)po $ dnhb4 (nh)(cTp/2) E #l+j+*l

1,j

exp(-iw1Ai)[h2(t')al,j]T p *(A-21)

Equation (A-20) shows that, in general, individual Fourier components of the

transmitted pulse mix, i.e., +l+j,*l, contribute for m * 0 to the correlation

function Snm. Note that for homogeneous Gaussian displacement statistics,

<Sr(z')Sr(z")>d - F(z" - z')

<al,j)d - 0 for j * 0
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thus, for <Snm), no mixing of pulse Fourier components occurs. So, if one

chooses a scattering volume sufficiently large to include all the scales of

variability, one expects that

{al,j}Tp - <al,j>d - 0 for j # 0 . (A-22)

If one assumes condition (A-22) in equation (A-21),

Sno = R2a 2 (R)po .1 dnhb4 (nh)(Tp/2)+lqi*l

exp(-iwIaT)[h2(t')al,O]Tp. (A-23)

It should be noted that it is straightforward to include the j * 0 terms in

equation (A-23) and in the analysis of section Ill. Note that the last term

of (A-23) can be written for h - 1 as

Tp/2 [ R+ct'/2+cTp/4

[h2 (t')al,O]Tp - (al,O)Tp  I h2dt' I dz exp(2iwlSr/c)

-Tp /2 [R+ct'/2-cTp/4

- I g(t)dt exp[2iwISr(z)/c] , (A-24)

where g(t) is the triangle function:

9M) -1- for 0; 1

for -i 0 ,

- 0 otherwise

and where - (z - R)/Az, with Az - cTp/2 Thus,

A-8



Snm - R2c2 (R)Tppo E I dnhb4 (nh)%plV*l I g(t)dt

exp{-iwl[AT-2Sr(z)/c]). (A-25)

The form of equation (A-25) suggests decomposing the displacement field into a

mean and fluctuating component as follows

s-s+s , (A-26)

where the overbar notation is used to indicate the weighted spatial average:

F2j = I g()f(z).

Thus, by definition,

s d[X,(m - 1)Tr + Tm] - d[X,(n - 1)Tr + mn]

- i(m - n)Tr , (A-27)

where equation (A-7) has been used and, hence, Tm - Tn + AT, AT < 'n, 'm < Tr,

and where the time interval (m - n)Tr has been selected to be small enough

that the mean velocity i does not change significantly over (m - n)Tr. The

fluctuating displacement s' can be written as

s' - d'[X,(m - 1)Tr + Tm] - d'[X,(n - 1)Tr + 'n] (A-28)

Note that for turbulence-like fluctuations, if (m - n)Tr < X , where Tin is

the temporal microscale, the frozen field hypothesis (Hinze, 1959) can be

invoked and s' can also be written in the form

s' - (m - n)Trv'(X) , (A-29)

where v' is the fluctuating velocity defined analogously to equation (A-27).

Substituting equations (A-27) and (A-29), using (A-l0), into equation (A-25)

yields
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Stn - R2z2 (R)Tppo E I'l " dnhb4(nh) exp[i2l Vh(m-n)Tr'nh/c]
1

exp{iwl[2vz(m-n)Tr/c-AT]} I dgg(t) exp{iw[2v'z(m-n)Tr/c]}, (A-30)

where the overbar and prime notation (for mean and fluctuating) have been

combined with the vector component notation subscript h (indicating along the

x/y plane) and subscript z (indicating the direction of the mean ray axis).

Note that Sh v h(m'-n)Tr 0 S'h. (It is straightforward to include the

term s'h - v'h(m - n)Tr with some additional algebra. However, most realistic

oceanographic cases will allow this generalization since the oceanographic

velocity variability is typically "red" in wavenumber spectra.) To normalize

equation (A-30), take Snm/Snn , which amounts to setting

R2c 2 (R)Tpp 0 - 1

and

1

After redefining Snm as the normalized pulse-to-pulse gated correlation

function with Snn - 1 from equation (A-30), the above normalization then yields

Snm _E +,11*1 1' dnhb4 (nh) exp[i2wlih(m-n)Tr'nh/cJ
1

exp{iwl[2Vz(m-n)Tr/c-AT] ) I dtg( ) exp{iw[2v'z(m-n)Tr/c] ) . (A-31)
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